The Trace Formula in Banach Spaces
نویسنده
چکیده
A classical result of Grothendieck and Lidskii says that the trace formula (that the trace of a nuclear operator is the sum of its eigenvalures provided the sequence of eigenvalues is absolutely summable) holds in Hilbert spaces. In 1988 Pisier proved that weak Hilbert spaces satisfy the trace formula. We exhibit a much larger class of Banach spaces, called Γ-spaces, that satisfy the trace formula. A natural class of asymptotically Hilbertian spaces, including some spaces that are `2 sums of finite dimensional spaces, are Γ-spaces. One consequence is that the direct sum of two Γ-spaces need not be a Γ-space. Dedicated to the memory of Joram Lindenstrauss
منابع مشابه
On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملA Class of Hereditarily $ell_p(c_0)$ Banach spaces
We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.
متن کاملOn The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces
In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.
متن کاملBANACH SPACES OF POLYNOMIALS AS “LARGE” SUBSPACES OF l∞-SPACES
In this note we study Banach spaces of traces of real polynomials on R to compact subsets equipped with supremum norms from the point of view of Geometric Functional Analysis.
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کامل